جذور المعادلات الغير خطية

مثال: أوجد جذور المعادلة التربيعية الأتية

$$x^2 - 24.13x + 1.40 = 0$$

طريقة نيوتن:

لحل المعادلة أعلاه بطريقة نيوتن نبدأ بنقطة في جوار الجذر ولتكن x0=0 حيث أن $f(x)=x^2-24.13x+1.40$ f'(x)=2x-24.13

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

رب ندخل المعادلة ومشتقتها من أجل تطبيق صيغة نيوتن

1	Α	В	С
1	x	f	f'
2	0	=A2^2-24.13*A2+1.4	=2*A2-24.13
3	=A2-B2/C2		
4			

بعدها نسحب الخلية B2 إلى B3 بأداة التعبئة التلقائية B2 الخلية B2 التعبئة نسحب الخلية C2 إلى C3 بأداة التعبئة

نكرر عملية ولكن للخلايا A4, B4, and C4 معاحتي نحصل على الدقة المطلوبة

	A5	•	(<i>f</i> _x =A4-	B4/C4
4	А	В	С	D	Е
1	х	f	f'		
2	0	1.4	-24.13		
3	0.058019	0.003366	-24.014		
4	0.058159	1.96E-08	-24.0137		
5	0.058159	0	-24.0137		
_					

لو بدئنا بالحل بطريقة نيوتن ولكن في جوار الجذر الثاني للمعادلة السابقة وهي النَقطة x0=20 وقمنا بنفس الخطوات السابقة لوجدنا الحل كما في الجدول

					٠ -	_	
	A6	-	. (0	f _x =	A5-B5/	C5	
1	А	В	С	D		Е	F
1	х	f	f'				
2	20	-81.2	15.87				
3	25.11657	26.17931	26.10314				
4	24.11365	1.005844	24.09731				
5	24.07191	0.001742	24.01383				
6	24.07184	5.26E-09	24.01368				
7							

طريقة القاطع:

x1=1, x0=0 أن x1=1, x0=0 لحل المعادلة أعلاه بطريقة القاطع نبدأ بالنقاط x1=1, x0=0 أن x1=1, x0=0 أن

$$x_2 = x_1 - \frac{(x_1 - x_0)f(x_1)}{f(x_1) - f(x_0)}$$

ندخل المعادلة والقيم الأولية

1	Α	В	С	D	Е
1	x0	x1	f(x0)	f(x1)	x2
2	0	1	=A2^2-24.13*A2+1.4	=B2^2-24.13*B2+1.4	=B2-((B2-A2)*D2/(D2-C2))
3					

في الخلية A3 نكتب B2=

في الخلية B3 نكتب E2=

بأداة التعبئة نسحب بمقدار خلية للأسفل بعد تظليل الخلايا C3, D3, E3 بأداة التعبئة نظلل النطاق A3:E3 ونسحب حتى نحصل على الدقة المطلوبة

	E	5	+ (f_x	=B5-((B5-A	45)*D5/	(D5-C5))	
\mathcal{A}	Α	В	С	D	Е	F	G	H
1	x0	x1	f(x0)	f(x1)	x2			
2	0	1	1.4	-21.73	0.060527			
3	1	0.0605	-21.73	-0.0568639	0.058063			
4	0.0605	0.0581	-0.057	0.00232178	0.058159			
5	0.0581	0.0582	0.0023	-2.29E-07	0.058159			

طريقة التنصيف:

لحل المعادلة أعلاه بطريقة التنصيف على الفترة [0,1] للدالة

$$f(x) = x^2 - 24.13x + 1.40$$

ندخل البيانات و المعادلات في ورقة العمل كما بلي

				٠. پ	پ دو	J ***	_
-4	Α	В	С	D	Е	F	G
1	a	С	b	fa	fb	fc	check
2	0	=(A2+C2)/2	1	=A2^2-24.13*A2+1.4	=B2^2-24.13*B2+1.4	=C2^2-24.13*C2+1.4	=D2*E2
3	=IF(G2<0,A2,B2)	=(A3+C3)/2	=IF(G2<0,B2,C2)				
4							

نظال الخلايا في النطاق d2:g2 ونسحب بأداة التعبئة للأسفل بمقدار صف

نطلل النطاق الجديد و هو A3:G3 ونسحب حتى نحصل على الدقة المطلوبة للجذر و هي c في ورقة العمل

	B13	-		<i>f</i> _x =(A1	3+C13)/2			
\mathcal{A}	Α	В	С	D	Е	F	G	H
1	a	С	b	fa	fb	fc	check	
2	0	0.5	1	1.4	-10.415	-21.73	-14.581	
3	0	0.25	0.5	1.4	-4.57	-10.415	-6.398	
4	0	0.125	0.25	1.4	-1.60063	-4.57	-2.24088	
5	0	0.0625	0.125	1.4	-0.10422	-1.60063	-0.14591	
6	0	0.03125	0.0625	1.4	0.646914	-0.10422	0.90568	
7	0.03125	0.046875	0.0625	0.646914	0.271104	-0.10422	0.175381	
8	0.046875	0.054688	0.0625	0.271104	0.083381	-0.10422	0.022605	
9	0.054688	0.058594	0.0625	0.083381	-0.01043	-0.10422	-0.00087	
10	0.054688	0.056641	0.058594	0.083381	0.03647	-0.01043	0.003041	
11	0.056641	0.057617	0.058594	0.03647	0.013017	-0.01043	0.000475	
12	0.057617	0.058105	0.058594	0.013017	0.001291	-0.01043	1.68E-05	
13	0.058105	0.05835	0.058594	0.001291	-0.00457	-0.01043	-5.9E-06	
14								

قيمة الجذر C=0.05835

طريقة النقطة الثابتة:

لحل المعادلة أعلاه بطريقة النقطة الثابتة نعيد صياغة المسألة ونبدأ بالنقطة x=0

$$f(x) = x^2 - 24.13x + 1.40$$
$$x = \frac{1.40}{x - 24.13}$$

ندخل البيانات والمعادلات

	A5 •	f _x	
	А	В	С
1	x	gx	
2	0	=-1.4/(A2-24.13)	
3	=B2		
4			

بعد إدخال صيغة النقطة الثابتة حسب الورقة أعلاه نظلل الخلية B2 ونسحبها إلى B3 بأداة التعبئة III ونطلل بعدها النطاق A3:B3 ونسحب حتى نحصل على الدقة المطلوبة

	B4		(=	f_x	=-1.4	I/(A4-24.13)	
	А	В	С		D	Е	F	
1	X	gx						ئة
2	0	0.058019						
3	0.058019	0.058159						
4	0.058159	0.058159						

الطرق المباشرة لحل منظومة خطية من المعادلات الجبرية

طريقة النظير الضربي

لو أردنا حل المنظومة الآتية:-

$$x_1 - x_2 + 2x_3 - x_4 = -8$$

$$2x_1 - 2x_2 + 3x_3 - 3x_4 = -20$$

$$x_1 + x_2 + 2x_3 = -2$$

$$x_1 - x_2 + 4x_3 + 3x_4 = 4$$

ندخل بيانات المنظومة في ورقة العمل كما يلي -

A	Α	В	С	D	Е	F	, i
1		x1	x2	x3	x4	b	
2		1	-1	2	-1	-8	
3		2	-2	3	-3	-20	
4		1	1	1	0	-2	
5		1	-1	4	3	4	
6							

نستعمل الدالة minverse لحساب نظير المصفوفة كما يلي

نحدد منطقة فارغة بحجم 4×4 من اجل أن نحسب المصفوفة النظيرة ثم نستدعي الدالة eminverse

	SU	M	▼ (X 🗸	f _x =N	IINVERS	E(A2:D5)				
	Α	В	С	D	Е	F	G	Н	- 1	J	
1	x1	x2	х3	x4	b						
2	1	-1	2	-1	-8	=MIN	VERSE((2:D5)			
3	2	-2	3	-3	-20						
4	1	1	1	0	-2						Г
5	1	-1	4	3	4						
6											

وبعد تحديد نطاق المصفوفة الأصلية A2:D5 المراد حساب نظيرها نضغط معا Ctrl+shift+enter

فنحصل على المصفوفة العكسية كما يلي

	G	2	▼ (1	f_{sc} {=MINVERSE(A2:D5)}					
1	Α	В	С	D	Е	F	G	Н	I	J
1	x1	x2	x3	x4	b					
2	1	-1	2	-1	-8		-7.5	3.5	0.5	1
3	2	-2	3	-3	-20		3	-1.5	0.5	-0.5
4	1	1	1	0	-2		4.5	-2	0	-0.5
5	1	-1	4	3	4		-2.5	1	0	0.5
_										

نضرب المصفوفة العكسية بالطرف الأيمن للمنظومة فنحصل على الحل (ظلل منطقة الحل وهي النطاق L2:L5)

	SU	М	▼ (× ×	f _x =N	IMULT(G	2:J5,E2:	E5)					
4	Α	В	С	D	Е	F	G	Н	- 1	J	K	L	М
1	x1	x2	x3	x4	b							x=	
2	1	-1	2	-1	-8		-7.5	3.5	0.5	1	=MMU	LT(G2:J5	,E2:E5)
3	2	-2	3	-3	-20		3	-1.5	0.5	-0.5			
4	1	1	1	0	-2		4.5	-2	0	-0.5			
5	1	-1	4	3	4		-2.5	1	0	0.5			Į .
_													

وعمود الحل يكون بعد أن نكبس ctrl+shift+enter كما يلي

	LS	5	- (<i>f</i> _x {=N	IMULT(G	62:J5,E2:I	E5)}					
	Α	В	С	D	Е	F	G	Н	- 1	J	K	L	М
1	x1	x2	x3	x4	b							x=	
2	1	-1	2	-1	-8		-7.5	3.5	0.5	1	x1 =	-7	
3	2	-2	3	-3	-20		3	-1.5	0.5	-0.5	x2=	3	
4	1	1	1	0	-2		4.5	-2	0	-0.5	x3=	2	
5	1	-1	4	3	4		-2.5	1	0	0.5	x4=	2	

طريقة حذف جاوس أما إذا أردنا استخدام طريقة حذف جاوس

1 -1 2 E1 3 E2 4 E3 5 E4 6	x1 2 2 1	C D x2 x3 -1 2 -2 3 1 1 -1 4	E x4 -1 -3 0	F b -8 -20	G	H -2 E1	1 x1 1	у х2 -1	К х3 2	L x4 -1	M b	N
2 E1 3 E2 4 E3 5 E4	1 2 1	-1 2 -2 3 1 1	-1 -3	-8 -20		E1						
3 E2 4 E3 5 E4	2 1	-2 3 1 1	-3	-20			1	-1	2	-1		
4 E3 5 E4 6	1	1 1	_							_	-8	
5 E4			0			E2-2*E1	0	0	-1	-1	-4	
6	1 .	1 /	_	-2		E3-E1	0	2	-1	1	6	
		-1 4	3	4		E4-E1	0	0	2	4	12	
7 -3	x1 :	x2 x3	x4	b		-4	x1	x2	х3	x4	b	
8 E1	1 -	-1 2	-1	-8		E1	1	-1	2	-1	-8	
9 E2	0	2 -1	1	6		E2	0	2	-1	1	6	
10 E3	0	0 -1	-1	-4		E3	0	0	-1	-1	-4	
11 E4+2*E3	0	0 2	4	12		E4	0	0	0	2	4	
12												
13					سي	ويض العك	بالت					
14												
15 x4=	2	x3=	2		x3=	3		x1=	-7			

 " الحظ لطرح صف من صف نكتب كما يلي:

 9
 E2
 0
 2
 -1
 1
 6
 E2
 0
 2
 -1
 1
 6

 10
 E3
 0
 0
 -1
 -1
 -4
 E3
 0
 0
 -1
 -1
 -4

 11
 E4+2*E3
 0
 0
 2
 4
 12
 =811:F11+2*B10:F10
 0
 2
 4

ثم نستعمل المفاتيح ctrl+shift+enter معا

ومعادلات التعويض العكسي كما يلي:

13						بالتعويض العكسي		
14								
15	x4=	=M11/L11	x3=	=-(M10+B15)	x3=	=(M9-B15+E15)/2	x1=	=M8+B15-2*E15+H15

الطرق الغير مباشرة لحل منظومة معادلات خطية

طريقة جاكوبي

$$4x_1 + x_2 - 4x_3 = -5$$

$$x_1 + 2x_2 + x_3 = 1$$

$$-x_2 + 4x_3 = 9$$

نحول المعادلات إلى الشكل الآتى

$$x_1 = \frac{-5 - x_2 + 4x_3}{4}$$

$$x_2 = \frac{1 - x_1 - x_3}{2}$$

$$x_3 = \frac{9 + x_2}{4}$$

	Α	В	С
1		Jacobi	
2	x1=	x2=	x3=
3	1	1	1
4	=(-5-B3+4*C3)/4	=(1-A3-C3)/2	=(9+B3)/4

وبعد تنفيذ الشكل السابق من المعادلات ونسخها للأسفل نحصل على

A	А	В	С	D	
1		Jacobi			
2	x1=	x2=	x3=		
3	1	1	1		
4	-0.5	-0.5	2.5		
5	1.375	-0.5	2.125		
6	1	-1.25	2.125		
7	1.1875	-1.0625	1.9375		
8	0.953125	-1.0625	1.984375		
9	1	-0.96875	1.984375		
10	0.976563	-0.99219	2.007813		
11	1.005859	-0.99219	2.001953		
12	1	-1.00391	2.001953		
4.0					

طريق جاوس سايدل نقوم بتعديل المعادلات في الورقة لتصبح كما يلي

A	А	В	С	
1		Gauss Seidel		
2	x1=	x2=	x3=	
3	1	1	1	
4	=(-5-B3+4*C3)/4	=(1-A4-C3)/2	=(9+B4)/4	
5	=(-5-B4+4*C4)/4	=(1-A5-C4)/2	=(9+B5)/4	

وعند التطبيق نحصل على حل أسرع من طريقة جاكوبي أي بعدد أقل من التكرار

_			و.ي ي.		
	A	Α	В	С	D
	1		Gauss Seid	del	
	2	x1=	x2=	x3=	
	3	1	1	1	
	4	-0.5	0.25	2.3125	
	5	1	-1.15625	1.960938	
	6	1	-0.98047	2.004883	
	7	1	-1.00244	1.99939	
	8	1	-0.99969	2.000076	

طريقة SOR تعتمد هذه الطريقة على جاوس سايدل ولو أخذنا W=1.2

	Α	В	С	D	Е	F	G
1		Gauss Seidel			SOR	w=	1.5
2	x1=	x2=	x3=		x1	x2	х3
3	1	1	1				
4	=(-5-B3+4*C3)/4	=(1-A4-C3)/2	=(9+B4)/4		=(1-\$G\$1)*A3+\$G\$1*A4	=(1-\$G\$1)*B3+\$G\$1*B4	=(1-\$G\$1)*C3+\$G\$1*C4
5	=(-5-B4+4*C4)/4	=(1-A5-C4)/2	=(9+B5)/4		=(1-\$G\$1)*A4+\$G\$1*A5	=(1-\$G\$1)*B4+\$G\$1*B5	=(1-\$G\$1)*C4+\$G\$1*C5
6	=(-5-B5+4*C5)/4	=(1-A6-C5)/2	=(9+B6)/4		=(1-\$G\$1)*A5+\$G\$1*A6	=(1-\$G\$1)*B5+\$G\$1*B6	=(1-\$G\$1)*C5+\$G\$1*C6
7	=(-5-B6+4*C6)/4	=(1-A7-C6)/2	=(9+B7)/4		=(1-\$G\$1)*A6+\$G\$1*A7	=(1-\$G\$1)*B6+\$G\$1*B7	=(1-\$G\$1)*C6+\$G\$1*C7
8	=(-5-B7+4*C7)/4	=(1-A8-C7)/2	=(9+B8)/4		=(1-\$G\$1)*A7+\$G\$1*A8	=(1-\$G\$1)*B7+\$G\$1*B8	=(1-\$G\$1)*C7+\$G\$1*C8

والقيم الرقمية هي

A	Α	В	С	D	E	F	G
1		Gauss S	eidel		SOR	w=	1.2
2	x1=	x2=	x3=		x1	x2	х3
3	1	1	1				
4	-0.5	0.25	2.313		-0.8	0.1	2.575
5	1	-1.156	1.961		1.3	-1.4375	1.890625
6	1	-0.98	2.005		1	-0.9453125	2.01367188
7	1	-1.002	1.999		1	-1.0068359	1.99829102
8	1	-1	2		1	-0.9991455	2.00021362

طريقة نيوتن لمنظومة معادلات غير خطية من

$$x + 2y = 4$$
$$2x^2 + y^2 = 7$$

الحل: نكتب المعادلات بالشكل الآتي

$$f_1(x,y) = x + 2y - 4$$

 $f_2(x,y) = 2x^2 + y^2 - 7$

جد الجاكوبي:

$$J(x,y) = \begin{bmatrix} \frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 4x & 2y \end{bmatrix}$$
$$|J(x,y)| = \begin{vmatrix} \frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} \end{vmatrix} = \begin{vmatrix} 1 & 2 \\ 4x & 2y \end{vmatrix} = 2y - 8x$$
$$J^{-1} = \frac{1}{(2y - 8x)} \begin{bmatrix} 2y & -2 \\ -4x & 1 \end{bmatrix}$$

نكتب صيفة نيوتن

$$\begin{bmatrix} x_{n+1} \\ x_{n+1} \end{bmatrix} = \begin{bmatrix} x_n \\ y_n \end{bmatrix} - J^{-1} \begin{bmatrix} f_1(x_n, y_n) \\ f_2(x_n, y_n) \end{bmatrix}
= \begin{bmatrix} x_n \\ y_n \end{bmatrix} - \frac{1}{(2y_n - 8x_n)} \begin{bmatrix} 2y_n & -2 \\ -4x_n & 1 \end{bmatrix} \begin{bmatrix} x_n + 2y_n - 4 \\ 2x_n^2 + y_n^2 - 7 \end{bmatrix}$$

ولحل المنظومة باستخدام إكسل علينا كتابة الصيغة العامة

$$\overrightarrow{X_{n+1}} = \overrightarrow{X_n} + \overrightarrow{\Delta X}, \quad \overrightarrow{\Delta X} = -J^{-1} \times F(\overrightarrow{X_n})$$

نفرض القيم الأولية هي

$$\overrightarrow{X_0} = [1.5, \qquad 1.5]^T$$

ثم نحسب الدالة F عند النقطة السابقة

$$F(\overrightarrow{X_n}) = \begin{bmatrix} f_1(x_0, y_0) \\ f_2(x_0, y_0) \end{bmatrix} = \begin{bmatrix} x_n + 2y_n - 4 \\ 2x_n^2 + y_n^2 - 7 \end{bmatrix} = \begin{bmatrix} 0.5 \\ -0.25 \end{bmatrix}$$

Δ	Α	В	Е
1	step	f1=x+2y-4	f2=2x^2+y^2-7
2		Xi	F(Xi)
3		1.5	=B3+2*B4-4
4	1	1.5	=2*B3^2+B4^2-7

تحسب مصفوف الجاكوبي

$$J(x,y) = \begin{bmatrix} 1 & 2 \\ 4x & 2y \end{bmatrix}$$

T F(V:)	H
2 Yi I- E/Yi\	هذه قيم تابتة في مصفوفة ج
Z	
3 =\$F\$1 =\$G\$1 =B3^2+B4-4	
4 1 1.5 =4*B3 =2*B4 =2*B3^2+B4^2-7	

والقيم العددية لهذه الخطوة (لاحظ أن قيم الصف الأول قيم ثابتة وهي 1 و 2 لهذا تم الإشارة لها بمرجعية مطلقة أي \$F\$1 ، و \$G\$1)

A	Α	В	C D		E	
1	step	f1=x+2y-4	f2=2x^2+y^2-7		f2=2x^2+y^2-7	
2		Xi	J=		F(Xi)	
3		1.5	1	2	0.5	
4	1	1.5	6	3	-0.25	

نحسب قيم

$$\overrightarrow{\Delta X} = -J^{-1} \times F(\overrightarrow{X_n})$$

كما ننقل القيم الجديدة ل X في العمود ألأول كما يظهر في الورقة

	Α	В	С	D	Е	F	
1	step	f1=x+2y-4		f2=2x^2+y^2-	f2=2x^2+y^2-7	1	2
2		Xi		J=	F(Xi)		
3		1.5	=\$F\$1	=\$G\$1	=B3+2*B4-4	=-MMULT(MINVERSE(C3:D4),E3:E4)	
4	1	1.5	=4*B3	=2*B4	=2*B3^2+B4^2-7	=-MMULT(MINVERSE(C3:D4),E3:E4)	
5		=B3:B4+F3:F4					
6	2	=B3:B4+F3:F4					

والنتائج لهذه المعادلات هي

	Α	В	C D		Е	F	G
1	step	f1=x+2y-4	f2=2x^2+y^2-7 f		f2=2x^2+y^2	1	2
2		Xi		J=	F(Xi)		
3		1.5	1	2	0.5	0.22222222	
4	1	1.5	6	3	-0.25	-0.361111111	
5		1.722222					
6	2	1.138889					

نسحب لبقية القيم

		1					
Δ	Α	В	С	D	Е	F	G
1	step	f1=x+2y-4		f2=2x^2+y^2-7		1	2
2		Xi		J=	F(Xi)		
3		1.5	1	2	0.5	-0.22222222	
4	1	1.5	6	3	-0.25	0.361111111	
5		1.72222222	1	2	0	0.039855072	
6	2	1.138888889	6.888889	2.277777778	0.2291667	-0.019927536	
7		1.68236715	1	2	0	0.000641569	
8	3	1.158816425	6.729469	2.31763285	0.003574	-0.000320785	
9		1.68172558	1	2	0	1.66337E-07	
10	4	1.15913721	6.726902	2.31827442	9.261E-07	-8.31685E-08	
11		1.681725414					
12	5	1.159137293					

مثال: حل النظام ألاتي بطريقة نيوتن

$$4x^2 - y^2 = 0$$
$$4xy^2 - x = 1$$

الحل:

$$f_1(x,y) = 4x^2 - y^2$$

 $f_2(x,y) = 4xy^2 - x - 1$

نجد الجاكوب<u>ي:</u>

$$J(x,y) = \begin{bmatrix} \frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} \end{bmatrix} = \begin{bmatrix} 8x & -2y \\ 4y^2 - 1 & 8xy \end{bmatrix}$$

ولحل المنظومة باستخدام إكسل علينا كتابة الصيغة العامة

$$\overrightarrow{X_{n+1}} = \overrightarrow{X_n} + \overrightarrow{\Delta X}, \quad \overrightarrow{\Delta X} = -J^{-1} \times F(\overrightarrow{X_n})$$

نفرض القيم الأولية هي

$$\overrightarrow{X_0} = [0, \quad 1]^T$$

ندخل المعادلات في ورقة العمل

1	Α	В	С	D	Е	F
1	step	f1=4x^2-y^2		f2=4xy^2-xy^2-1		
2		Xi	l	J=	F(Xi)	
3		0	=8*B3	=-2*B4	=4*B3^2-B4^2	=-MMULT(MINVERSE(C3:D4),E3:E4)
4	1	1	=4*B4^2-1	=8*B3*B4	=4*B3*B4^2-B3-1	=-MMULT(MINVERSE(C3:D4),E3:E4)
5		=B3:B4+F3:F4				
6	2	=B3:B4+F3:F4				. 1111

القيم العددية هي

A	Α	В	C D		E	F
1	step	f1=4x^2-y^2		f2=4xy^2-xy^2-1		
2		Xi		J=	F(Xi)	
3		0	0	-2	-1	0.333333333
4	1	1	3	0	-1	-0.5
5		0.33333333				
6	2	0.5				

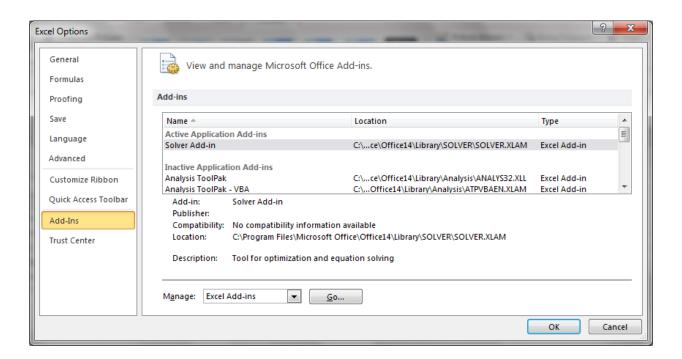
نسحب لحساب باقي القيم فنجد أن قيم الحل النهائي هي $\overrightarrow{X_n} = [0.44909, \qquad 0.898192]^T$

F3 ▼ (f _x){=				f_{x} {=-MMULT(MINVERSE	E(C3:D4),E3:E4)}	
	Α	В	С	D	Е	F	G
1	step	f1=4x^2-y^2		f2=4xy^2-xy^2-1			
2		Xi		J=	F(Xi)	inver(J)*F(X)	
3		0	0	-2	-1	0.333333333	
4	1	1	3	0	-1	-0.5	
5		0.33333333	2.666667	-1	0.19444	0.208333333	
6	2	0.5	0	1.333333333	-1	0.75	
7		0.54166667	4.333333	-2.5	-0.38889	-0.068390259	
8	3	1.25	5.25	5.416666667	1.84375	-0.274098672	
9		0.47327641	3.786211	-1.951802657	-0.05642	-0.022338335	
10	4	0.97590133	2.809534	3.694968596	0.32969	-0.072240308	
11		0.45093807	3.607505	-1.80732204	-0.00322	-0.001846366	
12	5	0.90366102	2.266413	3.259961269	0.02201	-0.00546855	
13		0.44909171	3.592734	-1.796384939	-1.6E-05	-1.12304E-05	
14		0.89819247	2.226999	3.226966312	0.00013	-3.15169E-05	

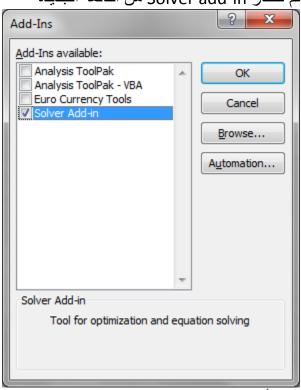
استعمال Solver لحل المنظومة الغير خطية من المعادلات مثال: أوجد حل المنظومة الآتية

$$u(x,y) = x^{2} + xy - 10 = 0$$

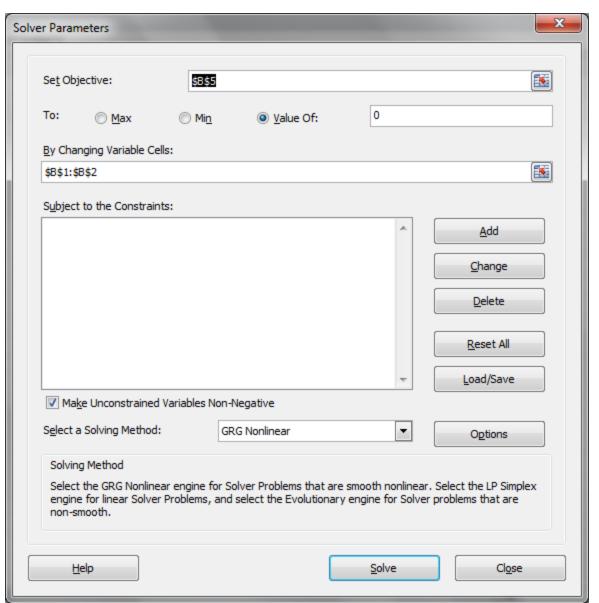
$$v(x,y) = y + 3xy^{2} - 57 = 0$$


$$x_{0} = 1, y_{0} = 1$$

 $x_0=1, \quad y_0=1$ ندخل الحل الأولي والمعادلات أعلاه في ورقة اكسل، ثم ندخل المقدار من أجل وضع المقدار الآتي صفر أ $Z=u(x,y)^2+v(x,y)^2$


	B5	+ (e	f _x =B3^2+B4^2
A	Α	В	С
1	x=	1	
2	y=	1	
3	f1	=B1^2+B1*B2-10	
4	f2=	=B2+3*B1*B2^2-57	
5	Z=	=B3^2+B4^2	

------نستدعي Solver من تبويب Data


نشاط: عندما لا يكون Solver موجودا في تبويب Data نذهب إلى قائمة File ونختار Options ومن ثم add-in وبعدها Go

ثم نختار Solver add-in من القائمة الجديدة

فَنجد أن Solver قد اندرج في تبويب Data نستدعي Solver ونختار الهدف وهو جعل قيمة Z=0 وذلك بتغيير القيم الأولية للحل

فيكون الحل

						فيدون الح
	B5	•	▼ (e f _x		=B3^2+B4^2	
A	Α	В	С	I	D	Е
1	x=	2.000541				
2	y=	3.00041				
3	f1	0.004607				
4	f2=	0.029772				
5	5 Z= 0.000908					
-						

والجواب

$$x_0 = 2.000541$$
, $y_0 = 3.00041$

طريقة النقطة الثابتة

مثال: حل طبريقة النقطة الثابتة لمنظومة معادلات غير خطية الآتية

$$x + 2y = 4$$

$$2x^2 + y^2 = 7$$
 $D = \{(x, y) | 1 \le x \le 2, \qquad 1 \le y \le 2\}$ نحول المعادلات إلى الشكل الآتي

$$x = g_1(x, y) = \sqrt{\frac{7-y^2}{2}}, \quad y = g_2(x, y) = \frac{4-x}{2}$$

ندخل البيانات على ورقة إكسل

A	Α	В	С	D
1	x	у	g1	g2
2	1.5	1.5	=SQRT((7-B2^2)/2)	=(4-A2)/2
3	=C2	=D2		

ونسحب للباقي

A	Α	В	С	D
1	X	у	g1	g2
2	1.5	1.5	1.5411035	1.25
3	1.541104	1.25	1.6488632	1.229448
4	1.648863	1.2294482	1.6565713	1.175568
5	1.656571	1.1755684	1.676013	1.171714
6	1.676013	1.1717143	1.6773618	1.161994
7	1.677362	1.1619935	1.6807396	1.161319
8	1.68074	1.1613191	1.6809726	1.15963
9	1.680973	1.1596302		

المجموع الأدنى للمربعات التقريب الخطي للبيانات ليكن لدينا البيانات الآتية

Х	6	8	10	12	14	16	18
у	3.8	3.7	4	3.9	4.3	4.2	4.2

A	Α	В	С	D
1	x	у	xy	x^2
2	6	3.8	=A2*B2	=A2^2
3	8	3.7	=A3*B3	=A3^2
4	10	4	=A4*B4	=A4^2
5	12	3.9	=A5*B5	=A5^2
6	14	4.3	=A6*B6	=A6^2
7	16	4.2	=A7*B7	=A7^2
8	18	4.2	=A8*B8	=A8^2
9	=SUM(A2:A8)	=SUM(B2:B8)	=SUM(C2:C8)	=SUM(D2:D8)

والقيمة العددية للبيانات

Δ	Α	В	С	D	Е	F	G	Н	-1	J
1	X	у	xy	x^2			В	M		T
2	6	3.8	22.8	36			7	84		28.1
3	8	3.7	29.6	64			84	1120		342.2
4	10	4	40	100						
5	12	3.9	46.8	144			1.428571	-0.10714		3.478571
6	14	4.3	60.2	196			-0.10714	0.008929		0.044643
7	16	4.2	67.2	256						
8	18	4.2	75.6	324			B=3.478571			
9	84	28.1	342.2	1120			M=0.044643			

التكاملات العددية أولاً: قاعدة منتصف الفترة نفرض التكامل الآتي

$$\int_{a}^{b} f(x) dx$$

نقرب الأقتران على أنه مستطيل قاعدته هي حدود التكامل "b-a والارتفاع هو قيمة الاقتران عن منتصف الفترة فإن التكامل العددي يصبح

$$\int_{a}^{b} f(x)dx = (b-a)f(\frac{a+b}{2})$$

إذا تم تجزئة الفترة إلى m من الفترات فطول قاعدة كل فترة واحداثيات ألنقاط تصبح

$$h = \frac{b-a}{m}, \quad x_j = a+j \ h, \qquad j = 0,1,2, \dots m$$
$$\int_a^b f(x) dx = h \sum_{j=0}^{m-1} f\left(\frac{x_j + x_{j+1}}{2}\right)$$

مثال: أوجد التكامل الآتي على ست فترات

$$\int_0^3 x^2 \ dx$$

ندرج المعادلات الآتية وفق قوانين التجزئة

	Α	В	С	D	Е	F	G	Н	1
1	a=	0	b=	3	m=	6	h=	=(D1-B1)/F1	ف الفترة
2									
3	j=	x	Xc=	f(x)=					
4	0	=\$B\$1+A4*\$H\$1		=((B4+B5)/2)^2	Integ=	=H1*D11			
5	1	=\$B\$1+A5*\$H\$1	=(B5+B4)/2	=((B5+B6)/2)^2					
6	2	=\$B\$1+A6*\$H\$1	=(B6+B5)/2	=((B6+B7)/2)^2					
7	3	=\$B\$1+A7*\$H\$1	=(B7+B6)/2	=((B7+B8)/2)^2					
8	4	=\$B\$1+A8*\$H\$1	=(B8+B7)/2	=((B8+B9)/2)^2					
9	5	=\$B\$1+A9*\$H\$1	=(B9+B8)/2	=((B9+B10)/2)^2					
10	6	=\$B\$1+A10*\$H\$1	=(B10+B9)/2	=((B10+B11)/2)^2					
11				=SUM(D4:D10)					

وبعد تطبيق المعادلات نجد أن التكامل هو

$$\int_0^3 x^2 dx = 0.5 \left(f\left(\frac{0+0.5}{2}\right) + f(0.75) + f(1.25) + f(1.75) + f(2.25) + f(2.75) \right) = 10.0625$$

		F4	•	· .	<i>f</i> _x =H1	*D11			
	Α	В	С	D	Е	F	G	Н	1
1	a=	0	b=	3	m=	6	h=	0.5	منتصف الفترة
2									
3	j=	X	Xc=	f(x)=					
4	0	0		0.0625	Integ=	10.0625			
5	1	0.5	0.25	0.5625					
6	2	1	0.75	1.5625					
7	3	1.5	1.25	3.0625					
8	4	2	1.75	5.0625					
9	5	2.5	2.25	7.5625					
10	6	3	2.75	2.25					
11				20.125					

ثانياً: قاعدة شبه المنحرف نفرض التكامل الآتي

$$\int_{a}^{b} f(x) dx$$

نقرب الأقتران على أنه شبه منحرف قاعدتاه هي قيمة الاقتران عند حدود التكامل والارتفاع هو حدود التكامل التكامل التكامل

$$\int_{a}^{b} f(x)dx = \left(\frac{(b-a)}{2}\right)[f(a)+f(b)] = \frac{h}{2}[f(a)+f(b)]$$
 $error = E = -\frac{h^{3}}{12}f''(c), \quad c \in [a,b]$
إذا تم تجزئة الفترة إلى m من الفترات فطول قاعدة كل فترة واحداثيات النقاط تصبح $h = \frac{b-a}{m}, \quad x_{j} = a+j h, \quad j = 1,2,...m-1$

$$\int_{a}^{b} f(x)dx = \left(\frac{h}{2}\right) [f(a) + f(b) + 2 \sum_{j=1}^{m-1} f(x_{j})]$$

مثال: أوجد التكامل الآتي على ست فترات

$$\int_0^3 x^2 dx$$

ندرج المعادلات الآتية وفق قوانين التجزئة

4	Α	В	С	D	Е	F	G
1	a=	0	b=	3	m=	6	
2	f(a)=	=B1^2	f(b)=	=D1^2	h=	=(D1-B1)/F1	شبه المنحرف
3	j=	x	f(x)=				
4	1	=\$B\$1+A4*\$F\$2	=B4^2		Integ=	=F2/2*(B2+D2+2*C9)	
5	2	=\$B\$1+A5*\$F\$2	=B5^2				
6	3	=\$B\$1+A6*\$F\$2	=B6^2				
7	4	=\$B\$1+A7*\$F\$2	=B7^2				
8	5	=\$B\$1+A8*\$F\$2	=B8^2				
9			=SUM(C4:C8)				

والحسابات هي

		F4	▼ (n)		f _x =	F2/2*(B2+D	2+2*C9)	
1	Α	В	С	D	Е	F	G	Н
1	a=	0	b=	3	m=	6		
2	f(a)=	0	f(b)=	9	h=	0.5	شبه المنحرف	
3	j=	X	f(x)=					
4	1	0.5	0.25		Integ=	9.125		
5	2	1	1					
6	3	1.5	2.25					
7	4	2	4					
8	5	2.5	6.25					
9			13.75					

ثانياً: قاعدة سيمبسون نفرض التكامل الآتي

$$\int_a^b f(x)dx$$
 نقرب الأقتران على بحيث يتم نجزئة كل فترة إلى فترتين $h=rac{b-a}{2}, \;\; x_0=a, \qquad x_2=b, \qquad x_1=rac{a+b}{2}$

$$\int_{a}^{b} f(x)dx = \frac{h}{3} \left(f(x_0) + 4f(x_1) + f(x_2) \right)$$

$$error = E = -\frac{h^2}{90} f^{(4)}(c), \quad c \in [a, b]$$

إذا تم تجزئة الفترة إلى m من الفترات فطول قاعدة كل فترة واحداثيات النقاط تصبح

$$h = \frac{b-a}{2m}, \quad x_j = a+j h, \qquad j = 1,2, \dots m-1$$

$$\int_a^b f(x)dx = \left(\frac{h}{3}\right) \left(f(a) + f(b) + 2\sum_{j=1}^{m-1} f(x_{2j}) + 4\sum_{j=1}^m f(x_{2j-1})\right)$$

مثال: أوجد التكامل الآتي على عشرة فترات الفرعية

$$\int_{1}^{3} \frac{x}{1+x^2} dx$$
$$2m = 10$$

ندرج المعادلات الآتية وفق قوانين التجزئة

	C14											
	C14 - 111/3 (B1/(11B1 2/1D1/(11B1 2/12 B13)4 E13)											
1	Α	В	С	D	Е	F	G	Н				
1	a=	1	b=	3	2m=	10	h=	=(D1-B1)/F1				
2												
3	i=	X	f(x)=	even	odd							
4	1	=\$B\$1+A4*\$H\$1	=B4/(1+B4^2)	=IF(MOD(A4,2)=0,C4,0)	=IF(MOD(A4,2)=1,C4,0)							
5	2	=\$B\$1+A5*\$H\$1	=B5/(1+B5^2)	=IF(MOD(A5,2)=0,C5,0)	=IF(MOD(A5,2)=1,C5,0)							
6	3	=\$B\$1+A6*\$H\$1	=B6/(1+B6^2)	=IF(MOD(A6,2)=0,C6,0)	=IF(MOD(A6,2)=1,C6,0)							
7	4	=\$B\$1+A7*\$H\$1	=B7/(1+B7^2)	=IF(MOD(A7,2)=0,C7,0)	=IF(MOD(A7,2)=1,C7,0)							
8	5	=\$B\$1+A8*\$H\$1	=B8/(1+B8^2)	=IF(MOD(A8,2)=0,C8,0)	=IF(MOD(A8,2)=1,C8,0)							
9	6	=\$B\$1+A9*\$H\$1	=B9/(1+B9^2)	=IF(MOD(A9,2)=0,C9,0)	=IF(MOD(A9,2)=1,C9,0)							
10	7	=\$B\$1+A10*\$H\$1	=B10/(1+B10^2)	=IF(MOD(A10,2)=0,C10,0)	=IF(MOD(A10,2)=1,C10,0)							
11	8	=\$B\$1+A11*\$H\$1	=B11/(1+B11^2)	=IF(MOD(A11,2)=0,C11,0)	=IF(MOD(A11,2)=1,C11,0)							
12	9	=\$B\$1+A12*\$H\$1	=B12/(1+B12^2)	=IF(MOD(A12,2)=0,C12,0)	=IF(MOD(A12,2)=1,C12,0)							
13				=SUM(D4:D12)	=SUM(E4:E12)							
14		Integ=	=H1/3*(B1/(1+B1^2)									

	٠		
4	٠	•	
٦,	_	N	•
			_

		C14	▼ (n	<i>f</i> _x =H	1/3*(B1/(1+B1	L^2)+	-D1/(1+D1^2)+2
A	Α	В	С	D	Е	F	G	Н
1	a=	1	b=	3	2m=	10	h=	0.2
2								
3	j=	X	f(x)=	even	odd			
4	1	1.2	0.49180328	0	0.49180328			
5	2	1.4	0.47297297	0.47297297	0			
6	3	1.6	0.4494382	0	0.4494382			
7	4	1.8	0.4245283	0.4245283	0			
8	5	2	0.4	0	0.4			
9	6	2.2	0.37671233	0.37671233	0			
10	7	2.4	0.35502959	0	0.35502959			
11	8	2.6	0.33505155	0.33505155	0			
12	9	2.8	0.31674208	0	0.31674208			
13				1.60926515	2.01301315			
14		Integ=	0.80470553					